Expression of an Androgenic Gland-Specific Insulin-Like Peptide during the Course of Prawn Sexual and Morphotypic Differentiation

نویسندگان

  • Tomer Ventura
  • Rivka Manor
  • Eliahu D. Aflalo
  • Simy Weil
  • Isam Khalaila
  • Ohad Rosen
  • Amir Sagi
چکیده

The crustacean male-specific androgenic gland (AG) regulates sexual differentiation. In the prawn Macrobrachium rosenbergii, silencing an AG-specific insulin-like encoding transcript (Mr-IAG) inhibited the development of male sexual characters, suggesting that Mr-IAG is a key androgenic hormone. We used recombinant pro-Mr-IAG peptide to generate antibodies that recognized the peptide in AG cells and extracts, as verified by mass spectrometry. We revealed the temporal expression pattern of Mr-IAG and studied its relevance to the timetable of sex differentiation processes in juveniles and after puberty. Mr-IAG was expressed from as early as 20 days after metamorphosis, prior to the appearance of external male sexual characters. Mr-IAG expression was lower in the less reproductively active orange-clawed males than in both the dominant blue-clawed males and the actively sneak mating small males. These results suggest a role for Mr-IAG both in the timing of male sexual differentiation and in regulating reproductive strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin and gender: an insulin-like gene expressed exclusively in the androgenic gland of the male crayfish.

Members of the insulin family of hormones are generally not regarded as gender-specific, although there is sporadic evidence for the possible involvement of insulin pathways in sexual differentiation. In crustaceans, sexual differentiation is controlled by the androgenic gland (AG), an organ unique to males. To date, attempts to identify active AG factors in decapods through either classical pu...

متن کامل

Phase-specific expression of an insulin-like androgenic gland factor in a marine shrimp Lysmata wurdemanni: Implication for maintaining protandric simultaneous hermaphroditism

BACKGROUND Shrimp in the genus Lysmata have a unique and rare sexual system referred to as protandric simultaneous hermaphroditism, whereby individuals mature first as male (male phase), and then the female function may also develop as the shrimp grow, so that the gonad is able to produce both eggs and sperms simultaneously, a condition called simultaneous hermaphroditism (euhermaphrodite phase...

متن کامل

Genomic cloning, expression, and single nucleotide polymorphism association analysis of the insulin-like androgenic gland hormone gene in the oriental river prawn (Macrobrachium nipponense).

Increasing evidence suggests that the insulin-like androgenic gland hormone (IAG) gene plays an important role in male sexual differentiation, metabolism, and growth in crustaceans. In the present study, we isolated the full-length genome sequence of IAG by genome walking based on the cDNA sequence in Macrobrachium nipponense. Four novel single nucleotide polymorphisms (SNPs) were studied, incl...

متن کامل

Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis.

Androgenic glands (AGs) of the freshwater prawn Macrobrachium rosenbergii were subjected to endocrine manipulation, causing them to hypertrophy. Transcripts from these glands were used in the construction of an AG cDNA subtractive library. Screening of the library revealed an AG-specific gene, termed the M. rosenbergii insulin-like AG (Mr-IAG) gene. The cDNA of this gene was then cloned and ful...

متن کامل

Timing sexual differentiation: full functional sex reversal achieved through silencing of a single insulin-like gene in the prawn, Macrobrachium rosenbergii.

In Crustacea, an early evolutionary group (∼50 000 species) inhabiting most ecological niches, sex differentiation is regulated by a male-specific androgenic gland (AG). The identification of AG-specific insulin-like factors (IAGs) and genomic sex markers offers an opportunity for a deeper understanding of the sexual differentiation mechanism in crustaceans and other arthropods. Here, we report...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011